# Lower limb artery blockage

- Very common: estimated up to 20% of people >50 years (200 million people worldwide)
- Impaired lower limb function
- Increase mortality and CV events





## Prevalence of PAD



Norman PE et al. Med J Aust 2004; 181: 150-4; Hirsch AT et al. JAMA 2001; 286: 1317-24; Meijer WT et al. Arterioscler Thromb Vasc Biol 1998; 18: 185-92; Criqui MH et al. Vasc Med 2001; 6: 3-7; Belch JJF et al. Arch Intern Med 2003; 163: 884-92. AIHW 2004; Figure adapted from Creager M, 2000.

JCU / TTH

# The pandemic of artery disease

Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis F Gerald R Fowkes, et al. Lancet 2013; 382:1329-40.

During the last decade the number of people with PAD increased by:

29% in low or middle income countries; 13% in high income countries.

202 million people estimated to have PAD in 2010.



# Risk of CV event or death versus amputation in PAD



**QRCPVD** 

JCU / TTH

Ouriel K Lancet 2001; 358: 1257-64.

amputation

## **Treatment**

- Medical management of PAD central:
  - Aspirin/ clopidogrel
  - Statins
  - BP control
  - Smoking cessation
  - Exercise program
- Critical ischemia and selected IC revascularisation: angioplasty/ stent or surgery



## **Stents**

- Complication of procedure e.g. atheroma embolises/ clot
- Other blockage/ narrowing up or downstream limits benefit
- Stent "restenoses"
- Progression of artery disease elsewhere



More durable treatments for PAD are needed



## Six minute walk test





# The better your walking performance with blocked arteries the longer you live

| Study                            | n.                             |     |               |      | RR, 95%CI         |
|----------------------------------|--------------------------------|-----|---------------|------|-------------------|
| Cardiovascular Mortality         |                                |     | 1             |      |                   |
| De Liefde et al.25 (2009)        | 635*                           |     | _ <del></del> |      | 2.34 (1.53-3.58)  |
| Leeper et al.19 (2013)           | 725 <sup>†</sup>               |     |               |      | 2.39 (1.46-3.94)  |
| McDermott et al.22 (2008)        | 217*                           |     |               |      | 6.81 (2.09-22.16) |
| Combined                         | 1577                           |     | ( 2000)       |      |                   |
| Fixed Effects Model              |                                |     |               |      | 2.54 (1.86-3.47)  |
| Random Effects Model             |                                |     |               |      | 2.64 (1.76-3.96)  |
| Heterogeneity: Q=2.88 (p=0.00001 | 24), $I^2 = 31\%$              | :   |               |      |                   |
| All-cause Mortality              |                                |     |               |      |                   |
| De Liefde et al.25 (2009)        | 768*                           |     | -             |      | 1.97 (1.50-2.59)  |
| McDermott et al.22 (2008)        | 217*                           |     |               |      | 2.22 (1.43-3.45)  |
| Leeper et al.19 (2013)           | 725 <sup>†</sup>               |     |               |      | 2.63 (1.92-3.60)  |
| Combined                         | 1710                           |     |               |      |                   |
| Fixed Effects Model              |                                |     | $\Diamond$    |      | 2.23 (1.85-2.69)  |
| Random Effects Model             |                                |     |               |      | 2.23 (1.85-2.69)  |
| Heterogeneity: Q=1.84 (p=0.00001 | 40), <i>I</i> <sup>2</sup> =0% |     |               |      |                   |
|                                  |                                | 1   | ,             | 1 1  |                   |
|                                  |                                | 0.5 | 1 2           | 5 10 |                   |





## Supervised exercise

- Attend 3 times per week
- Walk under supervision or do other exercise to maximum tolerance for 40 minutes
- Training period minimum of 3 months, usually longer 6-12 months





# Supervised exercise improves walking

Review: Exercise for intermittent claudication Comparison: 1 Overall outcomes: exercise regimen compared with placebo or usual care Outcome: 1 Maximal walking time (mins) Study or subgroup Exercise Placebo/usual care Mean Difference Weight Mean Difference Mean(SD) Mean(SD) IV.Random.95% CI IV.Random.95% CI 1 Usual care Collins 2005 11 23.8 (21.3) 10 11.47 (6.93333) 1.0 % 12.33 [ -0.97, 25.63 ] 10.7816 (5.29833) 7.4 % Crowther 2012 6.01 (2.1983) 6.77 [3.05, 10.50] Hiatt 1990 13.9 (3.5) 7.1 (2.9) 9.3 % 6.80 [ 3.92, 9.68 ] Hiatt 1994 14.7 (7.3) 7.3 (2.7) 5.3 % 7.40 [ 2.50, 12.30 ] McDermott 2008 48 11.6 (5.57) 44 7.2 (4.01) 11.8% 4.40 [ 2.43, 6.37 ] McDermott 2013 9.44 (5.95) 87 8.09 (5.14) 12.7 % 1.35 [ -0.31, 3.01 ] Mika 2006 10.93 (1.32) 28 7.52 (1.28) 14.9 % 3.41 [2.72, 4.10] Mika 2011 15.9 (1.15) 31 9.82 (1.3) 15.0% 6.08 [5.47, 6.70] Sanderson 2006 28 19.43 (8.44) 14 22.86 (11) 3.5 % -3.43 [ -9.99, 3.13 ] Tsai 2002 27 11.7% 12.5 (3.7) 26 7.6 (3.8) 4.90 [2.88, 6.92] Wood 2006 20.1 (8.33) 22.65 (13.91) -2.55 [ -15.28, 10.18 ] 1.1 % 93.7 % 4.47 [ 3.00, 5.94 ] Subtotal (95% CI) Heterogeneity: Tau2 = 3.44; Chi2 = 61.56, df = 10 (P<0.00001); I2 = 84% Test for overall effect: Z = 5.97 (P < 0.00001)2 Placebo 5.20 [ 0.88, 9.52 ] Larsen 1966 8.17 (5.52) 2.97 (1.88) 6.3 % 6.3 % Subtotal (95% CI) 5.20 [ 0.88, 9.52 ] Heterogeneity: not applicable Test for overall effect: Z = 2.36 (P = 0.018) Total (95% CI) 100.0 % 4.51 [ 3.11, 5.92 ] Heterogeneity: Tau2 = 3.32; Chi2 = 61.61, df = 11 (P<0.00001); I2 = 82% Test for overall effect: Z = 6.31 (P < 0.00001) Test for subgroup differences:  $Chi^2 = 0.10$ , df = 1 (P = 0.75),  $I^2 = 0.0\%$ -20 -10 Placebo/usual care Exercise



## Problems with supervised exercise

- Unpopular with patients
  - They experience pain on walking
  - Cost and time commitment
  - Gradual benefit
- Not available on the public health system
- Typically low recruitment when offered and can have high drop out rates





# Home or unsupervised exercise

- Can be hard to get motivation;
- Advice to walk alone has been reported to have limited effect
- In interviews patients reported that:
  - They felt they had an acute problem that could be fixed by surgery;
  - They appeared to have poor understanding of the disease mechanisms and available treatments;
  - They avoided exercise as they believed it worsened the problem



## A brief behaviour intervention

- A BBI developed to modify illness and walking beliefs and develop a personalised walking plan
- RCT 58 IC patients usual care vs usual care plus BBI delivered by a single psychologist (2x1hr sessions in patients home)
- Walking behaviour estimated by pedometer improved substantially (mean difference 1374 steps per day 1 year & 1630 steps per day 2 years)
- Also improvements in QUOL at 4months but not 1 and 2 years
- Reduced surgical interventions in the BBI group (39% vs 67%)



## **BIP**

#### Initial Assessment

#### **Intervention Group**

**Control Group** 

Week 1

Face to Face Session (Assess, Advice, Agree)

Phone Call (Check up)

Week 2

Face to Face Session (Assist, Arrange)

Phone Call (Check up)

Week 6

Phone Call – Review 5A's

Phone Call (Check up)

Week 12

Phone Call – Review 5A's

Phone Call (Check up)

Month 4

Follow-up Assessment

Follow-up Assessment

Month 12

Follow-up Assessment

Follow-up Assessment

Month 24

Follow-up Assessment

Follow-up Assessment



JCU / TTH

# **Study Locations**





## **Patient Recruitment**

| Site       | Patients |  |  |
|------------|----------|--|--|
| Townsville | 45       |  |  |
| Brisbane   | 24       |  |  |
| Sydney     | 10       |  |  |
| TOTAL      | 79       |  |  |



### **6 Minute Walk Test**





## **Measuring Physical Activity**

#### activPAL







## **Measuring Physical Activity**





## 7 Day Physical Activity (Steps)



## Acknowledgements

**Dr Corey Moran – JCU** 

Dr Smriti Krishna – JCU



Dr Rene Jaeggi – JCU



Jenna Pinchbeck - JCU



Dr Joe Moxon - JCU



Dr Sophie Rowbotham - UQ



Professor Philip Walker - UQ



**Dr Michael Bourke - Gosford** 



**Dr Bernie Bourke – Gosford** 



**Professor Paul Norman – UWA** 





## How you can help

- If you have AAA or PAD take part in trials;
- If you are healthy older person with no history of vascular disease take part as a control;
- Alert friends and neighbors to the studies and the potential to get involved.

Email jonathan.Golledge@jcu.edu.au

Jenna.pinchbeck@jcu.edu.au



# Research funding

### **Funding:**

NHMRC, Queensland Government, BUPA foundation, The Townsville Hospital Private Practice Trust Fund, NHF, NIH

